中国能源互联网发展基本特征及理念(二)

2019-01-24 09:50:00
admin
原创
2524
摘要:综上,能源互联网呈现开放、融合态势。政产学研各方探索着不同技术路线,初期分别针对能源系统灵活性不足问题、高污染和高排放问题、低质量和低效率问题提出了多种理念:借鉴互联网开放对等理念及体系架构变革能源系统关键设备、形态架构、运行方式以实现海量主体即插即用;融合信息通信技术和先进输电技术构建能源坚强传输网络实现清洁能源大范围配置与大规模利用;通过信息技术促进多种能源之间的相互替代和综合优化等。在融合过程中,各理念在清洁低碳、电气化特征、物理信息融合三方面交集不断加强,而并集则持续丰富,包括网络坚强、互联互通、多能互补、源网荷储协调、互联网思维和技术、分布自治、市场化和商业模式等。

4 能源互联网发展理念

4.1 能源 互联网实践特点

广泛的实践探索提供了认识能源互联网特征的丰富样本。以国家电网公司为代表的大型能源企业分别提出建设能源互联网企业、向综合能源服务商转型等目标。传统的能源规划设计单位、 节能服务公司、装备制造企业及燃气、热力公司等积极拓展业务进入综合能源系统建设。新奥、协鑫等新兴能源企业以擅长的天然气、光伏业务为基础进入综合能源服务领域。阿里、腾讯、浙江中控分别借助数据信息技术、人工智能,依靠对用户行为的理解,参与能源行业竞争。此外,电动汽车、动力电池生产企业、建筑企业等也在延伸产业链进入能源行业。

能源互联网作为新兴事物,体现了贴近用户、跨界探索、重视数据、合作共赢的实践特点。一是进入企业类型多元化、分散化,均发展贴近用户的业务,争夺客户粘性。二是相关企业均通过主营业务优势、某种技术优势、某细分市场优势开展价值链延伸,实现模式创新与市场突破,体现了业务拓展的路径依赖特点和集成创新性。三是数据获取、价值挖掘和平台建设作为价值高地,成为很多企业建立护城河的选择。四是BOT、PPP等商业模式很多,合作共赢成为共识。

4.2 广义能源互联网

综上,能源互联网呈现开放、融合态势。政产学研各方探索着不同技术路线,初期分别针对能源系统灵活性不足问题、高污染和高排放问题、低质量和低效率问题提出了多种理念:借鉴互联网开放对等理念及体系架构变革能源系统关键设备、形态架构、运行方式以实现海量主体即插即用;融合信息通信技术和先进输电技术构建能源坚强传输网络实现 清洁能源大范围配置与大规模利用;通过信息技术促进多种能源之间的相互替代和综合优化等。在融合过程中,各理念在清洁 低碳、电气化特征、物理信息融合三方面交集不断加强,而并集则持续丰富,包括网络坚强、互联互通、多能互补、源网荷储协调、互联网思维和技术、分布自治、市场化和商业模式等。

能源互联网正处于快速演进中,而且相关要素的技术经济性、能源系统颠覆性技术、具有破坏性的商业模式等都有较大的发展不确定性,因此目前还远未到可以较为成熟地全景勾勒其形态的阶段。总体而言,持续开放和创新将成为常态。结合对能源互联网“能源+”功能特征和跨界融合实践特点的分析,一个广义定义有利于发挥各方力量的不同优势,加速能源互联网生态的整体进化。这就如同互联网行业未限定在信息通信领域一样,各行各业与能源行业一起在实践中可以各有侧重突出能源互联网建设的某一方面。

综合已有各方研究进展,结合前述发展方向研判和特征刻画,本文试图提出具有较大包容性的广义能源互联网发展理念,即沿着能源转型电气化加速路径,发展符合能源革命要求、以新一代电力系统为标志的未来能源系统,形成基本的物理条件[1];同时,从边缘开放出发,以主动用户需求和市场机制为内生动力,推进技术、业务、主体、产业的跨界集成,达成能源系统与社会系统泛在的全新融合形态;利用综合能源服务平台、源网荷储协调、多能互补及大云物移新技术等实现工具,形成“能源+”系统功能,推动 能源消费升级,催生经济新业态。

简言之,这一理念着眼于发展现代能源经济,建立在能源转型驱动社会经济发展的理论逻辑架构之上,吸收了能源网络的互联网特征认识及相应的网络经济、范围经济和共享经济等思维模式,有利于保持能源互联网发展的强扩展性。

5 能源互联网产业头部格局影响因素

近年中国新兴产业发展表现出明显的头部效应,有必要研究影响未来能源互联网产业头部格局的关键因素。这也是能源互联网企业塑造核心竞争力所在。产业头部格局竞争表现在不同能源品种之间、网络之间、技术和商业模式之间的竞争,具有多层次、多方位和多元化的特点。各类能源互联网企业需要充分发挥不同的能源资源优势、网络优势、品牌优势、用户优势和技术优势。

5.1 能源互联互通能力

能源互联网发展主导权的竞争关键在于互联互通能力。一是各类能源网络的规模、布局,其互联互通所达范围、网络结构特征、与其他网络连接深度等,影响其在能源互联网中的地位。互联互通能力是各类能源网络实力的传递和影响力的施展途径[18]。能源系统中已形成了油气管网等多种网络,其中,电网相对是互联互通范围最大、配置能力最强、与海量用户互动潜力最大的能源网络,最具互联网特征,智能化水平和互联网应用基础相对更好,开展能源增值服务潜力极大,因而在发展能源互联网方面具有先发优势。未来的电网不仅是传统意义上的电能输送载体,还将成为构建能源互联网的基础平台,通过与互联网、物联网、智能移动终端等相互融合,服务 智能家居、智能社区、 智慧城市发展。

二是综合能源服务平台建设。综合能源服务平台具有入口、联接、激发属性,是调控、交易及衍生各类应用的操作系统,能实现广泛主体间能源、信息、市场等方面的整合,是企业组织能够平台化的物质基础。这与“苹果系统”、 工业互联网平台等类似,均是各领域的底层核心竞争力。平台的本质之一是数据,数据获取能力、价值挖掘能力及相关的能源互联网业务理解与创新能力对于平台建设尤为关键。

三是标准体系建设。标准影响互联互通发展效率和最终质量,标准竞争获得的产业领先能力可转化为持续的比较优势,不同的标准体系也会在能源互联网不同层面导致不同的发展形态。一个高质量的标准体系应该有利于降低能源互联网复杂度,即通过对多能转换接口、综合能源服务平台交互接口等关键环节标准的设计,提高“即插即用”、信息交互水平。

5.2 综合能源系统规划设计环节

综合能源系统规划设计是能源互联网产业链条上的特殊一环,尤其在当前发展路径多元、导则标准缺失、技术融合难的产业引导期显得更为重要。一是规划层面较接近市政决策层的话语体系,易输出理念,直接与市政规划对接,是从上而下切入市场的重要入口。二是规划理念、原则等影响一个地区综合能源系统发展方向,决定未来几十年的能源利用格局。三是规划设计可以成为拓展综合能源服务市场的先导,规划层面易搭建生态体系,统筹理顺新能源、储能、电动汽车、节能各类业务逻辑,可带动相关设备企业、金融企业进入,并发展为总包能力,进而形成规划+能源实业的平台。

以广义能源互联网为指导,综合能源系统规划设计可包括2个层面。底层是围绕对象能源转型指标要求,基于多能互补、源–网–荷–储协调理念,按照充分利用清洁能源,充分考虑冷热气电等在满足终端用户用能需求上的等效替代关系,计及能源加工转换环节经济性和转化速度与效率条件下,规划设计多能耦合环节的规模和布局。此外,要拓展形成能源子系统与交通等城市其他子系统一体化规划能力,实施电、气、冷、热管网布局综合规划、管廊一体化规划。上层是基于“能源+”理念,考虑对象产业升级等需求,因地制宜整合分布式光伏业务、储能业务、清洁供暖业务、 绿色建筑工业节能能源云(光伏云、储能云、充电设施云)及能源数据平台等,提供能源驱动生产生活方式优化的构想级的一揽子综合解决方案。

5.3 产业创新生态系统建设水平

传统能源产业向新兴朝阳产业转变,行业生态发生较大变化。传统能源产业是“竖井式”垂直集成、边缘封闭的业态,未来将逐步向边缘开放、各能源品种末端融合的能源新业态转变。未来能源互联网行业将发展成为由传统能源企业、新兴能源企业、互联网企业、人工智能企业、金融机构、规划设计机构、汽车企业、设备制造商、建筑企业等构成的生态系统。

未来参与综合能源服务市场竞争,要依靠生态模式、平台模式实现共赢。新生态对传统能源企业创新能力、体制活力、容忍风险提出了更高要求,需增强自身包容性、自适应性,以适应跨领域进入者,同时能创造性地通过“能源+”进入其他行业。一是有必要调整围绕某能源品种或业务的单一产业链条,形成以资本为纽带的产业集群能力和产融结合竞争力。二是由单一的商业模式向高维商业模式转变,开展以用户为中心的价值创造,以技术为驱动的业务革新,以数据为核心的信息增值,积极探索基于新生态的新型业务体系。三是面对潜在的大量小微主体带来的边缘创新、跨领域创新,需要建立能筛选、吸收创新创业团队的创新生态体系,超前布局具有潜在颠覆性的独角兽企业,有效应对产业发展高不确定性带来的风险。

5.4 关键技术创新能力

新科技新产业的发展仍面临诸多不确定因素,一些重大科技方向由于各种原因被忽视,而另一些一度被视为前景广阔的科技项目最终被证实缺乏市场价值[19]。能源互联网产业发展也在所难免。影响未来头部格局的最大变数在于关键技术进展情况[20]。其复杂性不仅体现在新一代电力系统等能源技术突破性进展,而且由于能源互联网产业的跨界特点,新材料、新一代信息技术、高端装备制造等战略新兴产业的重大突破也会带来颠覆性影响。

在当前技术条件和商业环境下,综合能源服务业务主要局限在 能效提升领域,因而在新能源和多能互补技术上具备成本优势对提升竞争力很关键。未来来看,为打开产业空间,需立足能源互联网多领域技术交叉融合趋势,加快石墨烯、储能、 能源大数据、物联网等各类核心技术、关键设备、新材料的研发,加大前沿引领技术储备。其中,储能独特的能量时空转移特性,可能打破局部电力系统即发即用平衡模式,作为多能互补的纽带和解放用户主动性的关键,将带来能源互联网商业模式的关键性突破。

6 结语

本轮能源转型将形成不同于化石能源时代的产业进化逻辑,更强调生态约束,更贴近用户需求,更突出跨领域科技创新、商业模式创新的多轮驱动。为高质量推进能源转型,有必要加快发展更具有包容性的能源互联网战略新兴产业。这需要充分汲取四十年来宝贵的改革开放经验,坚持创新、协调、绿色、开放、共享五大发展理念,以能源革命为统领,加强国家产业政策支持,并落脚为发挥市场配置资源的决定性作用。 (文章来源:《中国电力》杂志 鲁刚)


参考文献

[1]周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904.

ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904. (2)

[2]WINTER C. Hydrogen energy-abundant, efficient, clean: A debate over the energy-system-of-change[J]. International Journal of Hydrogen Energy, 2009, 34(14): S1-S52. DOI:10.1016/j.ijhydene.2009.05.063 (0)

[3]陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.

CHEN Guoping, LI Mingjie, XU Tao, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10): 3095-3103. (0)

[4]XUE Y S, YU X H. Beyond smart grid—A cybe-physical-social-system in energy future[J]. Proceedings of the IEEE, 2017, 105(12): 2290-2292. DOI:10.1109/JPROC.2017.2768698 (0)

[5]舒印彪, 薛禹胜, 蔡斌, 等. 关于能源转型分析的评述(一)转型要素及研究范式[J]. 电力系统自动化, 2018, 42(9): 1-15.

SHU Yinbiao, XUE Yusheng, CAI Bin, et al. A review of energy transition analysis part one elements and paradigms[J]. Automation of Electric Power Systems, 2018, 42(9): 1-15. DOI:10.7500/AEPS20180417008 (2)

[6]中华人民共和国国家发展和改革委员会, 国家能源局, 工业和信息化部. 关于推进" 互联网+” 智慧能源发展的指导意见[EB/OL]. (2016-03-01)[2018-06-16]. http://www.gov.cn/xinwen/2016-03/01/content_5047633.htm (1)

[7]刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015 (0)

[8]孙宏斌, 郭庆来, 潘昭光, 等. 能源互联网: 驱动力、评述与展望[J]. 电网技术, 2015, 39(11): 3005-3013.

SUN Hongbin, GUO Qinglai, PAN Zhaoguang, et al. Energy internet: Driving force, review and outlook[J]. Power System Technology, 2015, 39(11): 3005-3013. (1)

[9]埃森哲. 中国能源互联网商业生态展望[R]. 2017 (1)

[10]曾嵘, 高峰, 屈鲁, 等. 能源互联网发展研究[M]. 北京: 清华大学出版社. 2017

ZENG Rong, GAO Feng, QU Lu, et al. Research on the development of Energy Internet[M]. Beijing: Tsinghua University Press, 2017 (1)

[11]董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15): 1-11.

DONG Zhaoyang, ZHAO Junhua, WEN Fushuan, et al. From smart grid to energy internet basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. DOI:10.7500/AEPS20140613007 (0)

[12]VISWESWARIAH C, GAMMONS C B. Preface: Smarter energy[J]. IBM Journal of Research & Development, 2016, 60(1): 1-4. (1)

[13]中华人民共和国国家发展和改革委员会, 国家能源局. 能源生产和消费革命战略(2016—2030) [EB/OL]. (2017-04-25)[2018-03-18]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201704/t20170425_845284.html (1)

[14]国网能源研究院有限公司. 中国能源电力发展展望[M]. 北京: 中国电力出版社, 2017 (4)

[15]杰里米˙里夫金. 第三次工业革命: 新经济模式如何改变世界[M]. 张体伟, 孙豫宁, 译. 北京: 中信出版社, 2012 (1)

[16]王继业, 李洋, 路兆铭, 等. 基于能源交换机和路由器的局域能源互联网研究[J]. 中国电机工程学报, 2016, 36(13): 3433-3439.

WANG Jiye, LI Yang, LU Zhaoming, et al. Research on local-area energy internet control technology based on energy switch and energy routers[J]. Proceedings of the CSEE, 2016, 36(13): 3433-3439. (1)

[17]孙威, 李建林, 王明旺, 等. 能源互联网——储能系统商业运行模式及典型案例分析[M]. 北京: 中国电力出版社, 2017 (1)

[18]帕拉格˙康纳. 超级版图——全球供应链、超级城市与新商业文明的崛起[M]. 崔传刚, 周大昕, 译. 北京: 中信出版社, 2016 (1)

[19]中国社科科学院工业经济研究所未来产业研究组. 影响未来的新科技新产业[M]. 北京: 中信出版集团, 2017 (1)

[20]麻省理工科技评论. 科技之巅——《麻省理工科技评论》50大全球突破性技术深度剖析[M]. 北京: 人民邮电出版社, 2016 (1)

发表评论
评论通过审核后显示。
文章分类
联系我们
联系人: 王先生
电话: 18682310015
Email: info@thinker.vc
网址: www.thinker.vc
地址: 广东省深圳市南山区科苑北路科兴科学园C3座1601室